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Abstract—We measure output waveshape and rise time of two
high-speed digital circuits on wafer using a 50-GHz prototype of
a new instrument. The instrument uses vector error correction to
deembed the component under test like a network analyzer, but
reads out in the time domain after the fashion of an equivalent-time
oscilloscope. With the calibration plane of the instrument set at the
tips of the wafer probes, errors arising from dispersion in the con-
nection hardware are removed. We show that the random jitter
in the measurement system is removed without the convolution
penalty usually incurred by averaging so that anomalies such as
pattern-dependent jitter are exposed. The system rise time is 7
ps, compared to a system rise time of 12–13 ps for a conventional
equivalent-time oscilloscope of the same bandwidth in the presence
of wafer probes, bias networks, and cables.

Index Terms—Microwave integrated circuits, microwave
measurements, millimeter-wave measurements, pulse measure-
ments, time-domain measurements.

I. INTRODUCTION

M EASUREMENT of components intended for 40-Gb/s
systems presents a new challenge. Circuits are mi-

crowave in nature. However, performance specifications
typically are made in time-domain terms such as edge rise
time. Time-domain information is most useful for designers
to visualize circuit operation. No convenient relationship
between the time- and frequency-domain performance criteria
is available, and measurement of performance in the time
domain is thwarted by phenomena such as cable dispersion
and wafer-probe discontinuities. The eye of a 40-Gb/s signal
can be closed significantly by a few inches of cable and a few
transitions.

Here, we report on crucial time-domain performance mea-
surements made with an instrument called a large-signal net-
work analyzer (LSNA). This instrument is calibrated to a mea-
surement plane just like the familiar vector network analyzer
(VNA), yet it yields time–voltage data in a manner similar to an
equivalent-time sampling oscilloscope. The prototype version
of the instrument used in this paper has a 50-GHz bandwidth,
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and approximately 7-ps 20%–80% system rise time. Its perfor-
mance will be compared with that of a 50-GHz equivalent-time
oscilloscope.

II. LSNA I NSTRUMENT

The LSNA is not a new development, but has previously been
seen as a nonlinear network analyzer for device or behavioral
circuit modeling [1]–[3]. Although yielding time-domain data,
the instrument internally resembles a VNA or microwave transi-
tion analyzer (MTA) that would use a sinewave stimulus. How-
ever, it is equally valid to think of it as anoscilloscope with error
correction. Viewed this way, it can be seen as an ideal tool for
making precision time-domain wafer-level waveform measure-
ments in the presence of dispersive cables, imperfect adapters,
and unavoidable device probes. This is precisely the need in
the case of characterization of 40-Gb/s data components such
as multiplexers (MUXs), data amplifiers, and retiming circuits.

Fig. 1 depicts the block diagram of the LSNA. A practical
LSNA contains relays that allow for reconnection during-pa-
rameter, magnitude, and phase calibration phases. For ease of
description, these have been left out and, in this paper, the cali-
bration procedure will be described in principle only.

The constraints on the use of an LSNA are twofold. Firstly,
any waveform to be examined must be periodic, and the period
must be known. This is really the same condition that exists for
equivalent-time oscilloscopes traditionally used for such mea-
surements since these must normally be provided with a trigger
signal at or below the fundamental frequency of the signal being
measured.

Secondly, all frequency components present in the waveform
must be anticipated. In other words, the LSNA must be cali-
brated at all the frequencies that might be present in the signal
to be examined. A suitable analogy might be the use of a har-
monic balance (HB) algorithm in a simulator. Unlike a tran-
sient algorithm as found in SPICE, the HB simulator also re-
quires that one must specify all frequency orders of the stimulus
signal. This constraint exists because the LSNA, though dis-
playing data in the time domain, calibrates at single frequencies
selected from a comb. The comb fundamental must be chosen,
and wanted members of the comb identified. This is not usually
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Fig. 1. Block diagram of the LSNA. Switching circuitry used during the calibration procedure has been eliminated for the interest of simplicity.

a serious constraint when testing data transmission components
because both the clock rate and period of any pseudorandom bit
sequence (PRBS) are known.

III. CALIBRATING THE LSNA

The LSNA is first connected as a VNA, with a sinewave
source, and a small-signal vector calibration performed at the
probe tips in the customary manner. We experimentally find
good accuracy using line-reflect-reflect-match (LRRM) or thru-
reflect line (TRL) methods, although the TRL method requires
that the probes move with respect to each other during calibra-
tion, causing complications we choose to avoid. The calibration
is made at the selected fundamental and its harmonics.

Next a small-signal one-port calibration is performed at a lo-
cation convenient for the attachment of connectorized compo-
nents such as a power meter’s sensor. This is necessary because
it is impossible to connect a power sensor and harmonic phase
reference to a probe tip. This calibration is carried out at the
connector on the outside (non-device-under-testing (DUT) side)
of the reflectometer since this does not require that the pre-
vious two-port calibration be invalidated by breaking any con-
nections inside the couplers. The one-port calibration is carried
out with a through in place of the DUT, and simple coaxial stan-
dards are used. The one-port vector calibration is followed by a
power calibration carried out at the one-port calibration plane
by means of attaching a power meter sensor. The VNA is now
able to ratio the complex voltage waves and measure absolute
power levels at the wafer-probe tips. In other words, we know
not only , etc., but also the absolute value of the
magnitudes of and, thus, also , etc.

Next, the sinewave source is disconnected and a comb refer-
ence generator is connected at the one-port (coaxial) calibration
plane. Care is taken in all calibrations to have the same ultimate
signal frequency reference and, thus, the same sources of sto-
chastic jitter. This typically means that the comb generator is
driven by the source previously used for the small-signal cal-
ibrations, and the LSNA local oscillator (LO) source remains

locked by the same means to this original signal source. The ref-
erence generator is driven with a fundamental frequency that is a
subharmonic of all the frequencies included in the small-signal
calibration. The reference comb provides the absolute phase ref-
erence that allows the instrument to relate the phase (timing) of
traveling-wave signals measured at different frequencies.

The corrected magnitude and phase of each harmonic com-
ponent relative to a known universal subharmonic is now estab-
lished at the probe tips. When performing a measurement, the
LSNA uses the absolute magnitude and known relative phase
(timing) of all harmonics of each traveling wave (, etc.) to
carry out an inverse Fourier transform to produce the time-do-
main waveform.

Of course, accuracy of the result relies on knowing the rel-
ative phase of all harmonics of the reference comb generator
within the bandwidth of the measurement. The reference comb
generator was carefully characterized via a nose-to-nose cali-
bration [4], [5]. Improvements in the nose-to-nose calibration
method are the subject of a patent application, and traceability
of the reference generator magnitude and phase to 110 GHz is in
the process of being established, although this was not in place
at the time this paper’s manuscript was prepared.

IV. A MPLIFIER RESULTS

We will examine the performance of two high-speed inte-
grated circuits (ICs) tested on a wafer-probe station. The first
circuit is a data amplifier that is intended to be run in a limiting
mode with output of 3–3.5 V peak to peak into 50at a funda-
mental frequency of approximately 21 GHz. It can also be used
as a clock amplifier with a fundamental frequency of approxi-
mately 43 GHz. A 4 : 1 MUX will also be evaluated. The MUX
has current-mode logic (CML, 0 to0.5 V) output into 50-
suitable for driving the data amplifier.

We are interested in the performance of the circuits on fast
transitions, specifically such characteristics as rise time, over-
shoot, ringing, etc. We wish to measure the performance at the
wafer pads, to provide feedback to circuit designers, and to dis-
tinguish this from performance measured when fully packaged.
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Fig. 2. Actual measurement setup used to compare the LSNA results to those obtained with direct oscilloscope tests of the data amplifier. Note that both a 50-GHz
wafer probe and 50-GHz bias network are present between the measurement instrument and DUT. The arrow identifies the closest point at which a conventional
sampling oscilloscope can be connected. Had we not sought to carry out a direct comparison with a sampling oscilloscope for the purpose of this paper, the bias
networks could have been located outside the directional couplers.

Fig. 3. Measurement results showing the amplifier output waveform obtained
using the new instrument. The trace composed of dots shows a measurement
carried out with a conventional sampling scope, and the reduced-amplitude
inverted waveform is the input signal to the amplifier. The stimulus fundamental
frequency is 700 MHz.

Fig. 2 shows the connection used for the amplifier mea-
surement. In the past, such a measurement would have been
made with a sampling oscilloscope. The presence of the bias
networks, wafer probes, and interconnection hardware such as
cables and adapters, would progressively degrade system rise
time. Using the LSNA, these components will be effectively
removed by calibration at the probe tips.

Fig. 3 shows the measured output signal obtained from the
LSNA. The same plot shows measurements of the input signal,
along with the output signal obtained from a 50-GHz sampling
oscilloscope. Fig. 4 shows similar results, but with a funda-
mental square-wave frequency of 2.8 GHz, four times higher
than the signal used for Fig. 3. Fig. 5 shows an expanded view
of the first rising transition of the data in Fig. 4.

Fig. 4. Measurement results similar to those of Fig. 3, but for a fundamental
stimulus at 2.8 GHz instead of 700 MHz.

V. ANALYSIS OF AMPLIFIER RESULTS

The LSNA yields a continuous trace, in the sense that it con-
tains its result in “analytic” form, and can tabulate numeric
output with arbitrary point density. It is also capable of ana-
lytically reporting measured slope of a transition. In contrast,
the sampling oscilloscope has a prespecified point density, each
sample being one measurement made in response to one trigger
event. (The oscilloscope was used with no averaging.) The re-
ported 20%–80% rise times are11 and 15 ps, respectively,
but depend a little on the end-of-transition levels selected. Peak
slopes are around 130 and 90 V/ns.

With a 700-MHz fundamental, the LSNA is measuring 71
harmonics, employing almost the full 50-GHz bandwidth. A
system with a bandwidth of 50 GHz, but with a rapid fall in
response above 50 GHz, should theoretically have a 20%–80%
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Fig. 5. LSNA and oscilloscope measurements from Fig. 4 expanded about the
first rising transition. Peak slopes are around 130 and 90 V/ns.

rise time of approximately 7 ps.1 We may approximately “de-
convolve” the response of the system from the response of the
device using the rule-of-thumb that rise times accumulate as the
root of the sum of their squares. The LSNA reports a rise time
of 11 ps, suggesting an actual waveform rise time of7–8 ps.

Allowing for the bias network (5 ps), wafer probe (6 ps),
adapter (4 ps), and oscilloscope response (7 ps), we might ex-
pect the oscilloscope system to represent an ideal rise time of

, just over 11 ps, perhaps 1–2 ps larger to
allow for some cable loss. Our comparative oscilloscope mea-
surement, taken by breaking the circuit at the point marked with
an arrow in Fig. 2, gives a rise time of 15 ps, implying a system
rise time of 12–13 ps consistent with this rough estimate, as
some 15 cm of cable is present. Note that while we are able to
go forward through the calculation above, it would be extremely
precarious to start with a rise time of 15 ps and go backward to
conclude a signal rise time of 7 or 8 ps.

In Fig. 4, the oscilloscope trace shows some ringing with a
frequency near 9 GHz, but the LSNA trace does not. The os-
cilloscope trace shows a lower amplitude, accounted for by the
response of the components (wafer probe, cables, bias network)
between the device and its connector. The LSNA waveform
is beginning to exhibit Gibb’s phenomenon, visible mainly as
ringing appearing at the beginning of the transitions.

It is interesting to note that both systems exhibit misleading
fine structure in the waveshape, but for different reasons. The
fine structure is apt to vary with stimulus frequency content for
the oscilloscope case as a consequence of its overall response
not being flat. In the LSNA case, the fine structure will vary with
fundamental frequency in accordance with Gibb’s phenomenon
and the relative position of the fundamental and the absence of
any data above the highest calibration frequency.

1For comparison, a 50-GHz system with single-pole rolloff would exhibit a
20–80 rise time of just over 4 ps, while a system with a fifth-order rolloff—more
representative of an actual oscilloscope—would exhibit around 6 ps.

VI. JITTER AND AVERAGING

Use of averaging with a conventional sampling oscilloscope
can compromise the bandwidth as a consequence of trigger jitter
[6]. We now show that the so-called absolute calibration method
employed in the LSNA eliminates systematic errors that would
otherwise be introduced by time jitter. First, we investigate what
the relationship is between the jitter probability density function
and the systematic errors encountered. Assume that we apply a
periodic waveform with a period . We can represent this
signal by a set of complex Fourier series coefficients, with
index going from zero to infinity. The relationship between

and can be written

(1)

The Fourier series coefficient is called the th harmonic
of the signal . In practice, a limited number of harmonics
is sufficient to faithfully represent a signal. The LSNA allows
the measurement of all harmonics of with frequencies
below 50 GHz.

We now investigate the systematic errors caused by intro-
ducing time jitter noise. The components are measured in
the LSNA by sampling the signal and by using a discrete
Fourier transform (DFT). The jitter noise will be represented by
a stochastic variable, with a probability density function .
Consider now that we sample the waveform with a sam-
pling period , calling the th sample . One can then write

(2)

In (2), represents the realization of the stochastic variable
for the th sample. In order to find the systematic error caused
by the presence of, we will calculate the expectation of the
sampled signal , denoted . This is done so

(3)

which leads to

(4)

where the function is equal to the Fourier transform of
the probability density function . In statistics, is also
called the characteristic function of the stochastic variable.

We interpret (4) to say that the expectation of the sampled
waveform is equal to the jitter-free sampled waveform of a fil-
tered version of , where , the characteristic function
of , represents the frequency transfer function of the filter that
is applied. However, the LSNA calibration procedure has been
designed to remove the systematic errors due toall of the mi-
crowave hardware (using a power meter for amplitude calibra-
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Fig. 6. Output of a MUX running at 10.24 GB/s viewed with a 50-GHz
sampling scope. The data stream is a PRBS of length 16 bits.

Fig. 7. Output waveform of the same MUX used for Fig. 6, but obtained using
the 50-GHz LSNA prototype, with the calibration reference plane set at the IC
output pad.

tion and a harmonic phase reference for phase calibration). As
such, it will also eliminate this systematic error caused by the
timing jitter. This can easily be understood since the system-
atic error caused by timing jitter manifests itself as an additional
linear distortion, which cannot be distinguished from linear dis-
tortion caused by the hardware. It has been assumed that the
same jitter is present during calibration as during the measure-
ment: This condition is carefully met in normal calibration of
the instrument.

The elimination of random (stochastic) jitter immediately re-
veals pattern-dependent (deterministic) jitter, a potential cause
of intersymbol interference.

VII. MUX M EASUREMENTS

Fig. 6 shows the eye of a bit pattern at the output of the MUX
IC as captured by an oscilloscope, where much of the “noise”
on the data is jitter. This is indicated by the greater spread of
points on transitions compared to regions where the level is sub-
stantially static. Fig. 7 shows the same measurement using the
LSNA. Of note in the comparison of these two figures is the tran-
sition crossover asymmetry visible in the LSNA case, but mostly
hidden in the scope case. We attribute the apparent rounding or
“crunching” of the transitions to cable loss based on comparison
of measurements taken with a calibration plane behind a short
cable run with those without the cable run. Note also the 13%
difference in apparent amplitude.

Fig. 8 shows the output that is expected from detailed simu-
lation of the MUX circuit in ADS. The simulations agree well

Fig. 8. Output waveform of the MUX used for Fig. 7, as simulated in ADS.

Fig. 9. MUX output waveform viewed in oscilloscope mode with the LSNA.
Pattern-dependent differences in edges are evident. Some of the fine structure
on bit levels can be attributed to reflections from the imperfect load presented
to the device by wafer probes, adapters, etc.

Fig. 10. MUX output waveform similar to Fig. 9, but viewed with an
oscilloscope through a wafer probe, half a meter of high-quality cable, and
using built-in 1024 averaging.

with the LSNA measurements, but only poorly with the scope
measurements, lending further credence to the LSNA results.

Figs. 9 and 10 compare a measurement of a bit stream using
the LSNA with a similar measurement on the same device using
an oscilloscope with 1024 averaging. The distortion, loss of de-
tail, and reduced amplitude resulting from dispersion and from
the use of averaging in the presence of jitter are clearly visible.

VIII. C ONCLUSIONS

We have shown that it is possible to make time-domain
measurements independent of dispersion in the connections to
a circuit, and without contributions arising from measurement
system timing jitter. As a consequence of this, rise time can
be measured with no interference or degradation from wafer
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probes, connecting hardware, or jitter, and long connecting
cables do not close the eye of a data stream. The 50-GHz
prototype has a system rise time of 7 ps. A 110-GHz version
could be expected to have a rise time below 3.5 ps.
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